
Student Code Online Review and
Evaluation 2.0

TEAM: SHAMIK BERA, DOROTHY AMMONS, PATRICK KELLY, RAK ALSHARIF
ADVISOR/CLIENT: RAGHUVEER MOHAN

Table of Contents
• Goals

• Motivations

• Approach

• Novel features/functionalities

• Algorithms and Tools

• Technical Challenges

• Design

• Evaluation

• Progress Summary

• Milestones 4, 5, and 6

• Task matrix for Milestone 4

Goals

Increase the capabilities of the current S.C.O.R.E. application
• Add collusion detection and AI detection to catch cheating and plagiarism
• Add roster importing and grading exporting
• Implement customizable rubrics for automated grading

Implement S.C.O.R.E into classrooms

• Allow current FIT CSE classes to use S.C.O.R.E
• Collect feedback from professors and students
• Make improvements based on suggestions

Motivations

Current progress

• Great progress has been made in our project
• We are on track to reach our goals

Our target

• Give professors and students an easier method to submit or create assignments

Approaches

Canvas Imports and Exports
Professor
● Professors will be able to upload Canvas rosters on S.C.O.R.E..
● Professors will be able to export the S.C.O.R.E. grades in a format accepted by

canvas.

Collusion Detection
Professor
● Professors will be able to view every submission’s plagiarism score.
● Professors will be able to view similarities between S.C.O.R.E. submissions.

Approaches (P2)

Generative AI Detection
Professor
● Professors will be able to view similarity scores for every submission compared

to generative AI output.

Rubrics
Professors
● Professors will be able to create rubrics that have custom point systems for

completion, test cases, late scores, and alike.
● Assignments will be automatically graded based on rubric criteria.

Students
● Students will be able to view rubrics for their assignments.

Novel Features

Automated rubric based grading
• Custom rubrics that are used in auto-grading assignments

AI and collusion detection visualization
• Submissions that are tested for % AI used
• Submissions that are compared for collusion amongst each other
• Visuals to easily display these representations

Tools
● COPS (Code Originality and Plagiarism System) for detecting similarity and potential

collusion between student code submissions.
● Python for backend analysis, file processing, and detection logic.
● Flask for API endpoints that connect grading, detection tools, and the web interface.
● React for dynamically displaying grades, similarity results, and AI detection data.
● Google Cloud Run for scalable deployment and classroom usage.
● Firestore and Cloud Storage for managing submission files, grading data, and

metadata.
● Git/GitHub for version control and team collaboration.
● Python-based feature extraction for source code analysis
● Flask API endpoint for AI probability scoring

Technical Challenges

● Designing plagiarism and AI detection systems that minimize false positives while still
identifying meaningful similarities in student code.

● Integrating multiple features (autograding, rubrics, AI detection, and COPS) into a
single, stable platform.

● Visualizing similarity and detection results in a clear and useful manner for instructors.
● Ensuring the system scales well for large classes while maintaining performance and

data security.

Design

System Architecture

Evaluation

• Speed
• Measure how long file uploading is
• Measure how long automated testing/grading is

• Accuracy
• Ensure the autograder is grading test cases for submissions correctly
• Ensure all rubric areas are accounting for the grade correctly

• Reliability
• Test server capabilities in terms of multiple file submissions or exports at once
• Test security protocols, including the deletion of data, data leaks, and system break-ins

• User Demo
• Have professor(s) use the web app to create a course and assignment
• Have students use the web app to make submissions and receive grades/feedback

Progress Summary
Module/feature Completion % To do

Roster Importing 50% Force Canvas style spreadsheets for importing

Grade Exporting 0% Create an export button and subsystem to
export a csv in the Canvas gradebook style

Automatic Rubric Based Grading 50% Connect the rubric system to the auto grader

AI Detection 60% Improve accuracy, integrate results into
professor dashboard

COPS 50% Create a matrix and cluster algorithm for the
COPS program to be able to be read and
visualized

Milestone 4

• Complete Automatic Grading Rubric
• Complete Google Cloud Run Hosting
• Complete Importing Roster
• Integrate AI detection results into the submission workflow
• Evaluate AI detection accuracy using sample student submissions
• Connect AI detection output to the web interface for professor review
• Create a Cluster Algorithm for COPS with visualization

Milestone 5

• Refine AI detection model based on testing results
• Improve interpretability of AI probability scores for instructors
• Release SCORE 2.0 into classrooms
• Collect feedback from users
• Address reliability issues (multiple users at once, large data, security breaches)
• Conduct evaluation and analyze results
• Create poster for Senior Design Showcase
• Complete COPS integration

Milestone 6

• Finalize AI detection integration into the complete system
• Conduct evaluation and analyze results
• Create user manual/developer manual
• Create demo video
• Make any final touches

Task Matrix for Milestone 4

Task Dorothy Patrick Shamik Rak

Rubric Autograder
Completion

100% 0% 0% 0%

Complete Google Cloud
Run Hosting

100% 0% 0% 0%

Import Roster
Completion

0% 0% 100% 0%

AI Detection Integration
& Testing

0% 0% 0% 100%

Complete COPS Matrix 0% 100% 0% 0%

Questions?

