Student Code Onllne Rewew and
Evaluation 2.0 {4

TEAM: SHAMIK BERA, DOROTHYAMMONS PATRICK KELLY, RAK ALSHARIF

ADVISOR/CLIENT: RAGHUVEER MOHA




Table of Contents

* Goals

* Motivations

* Approach

* Novel features/functionalities
» Algorithms and Tools

* Technical Challenges

* Design

* Evaluation

* Progress Summary

* Milestones 4, 5, and 6

» Task matrix for Milestone 4



Goals

Increase the capabilities of the current S.C.O.R.E. application
« Add collusion detection and Al detection to catch cheating and plagiarism
« Add roster importing and grading exporting
* Implement customizable rubrics for automated grading

Implement S.C.0O.R.E into classrooms
» Allow current FIT CSE classes to use S.C.O.R.E
» Collect feedback from professors and students
* Make improvements based on suggestions



Motivations

Current progress

» Great progress has been made in our project
« We are on track to reach our goals

Our target

* Give professors and students an easier method to submit or create assignments



Approaches

Canvas Imports and Exports
Professor
e Professors will be able to upload Canvas rosters on S.C.O.R.E..
e Professors will be able to export the S.C.O.R.E. grades in a format accepted by
canvas.

Collusion Detection
Professor
e Professors will be able to view every submission’s plagiarism score.
e Professors will be able to view similarities between S.C.O.R.E. submissions.



Approaches (P2)

Generative Al Detection
Professor
e Professors will be able to view similarity scores for every submission compared
to generative Al output.

Rubrics
Professors
e Professors will be able to create rubrics that have custom point systems for
completion, test cases, late scores, and alike.
e Assignments will be automatically graded based on rubric criteria.
Students
e Students will be able to view rubrics for their assignments.



Novel Features

Automated rubric based grading
« Custom rubrics that are used in auto-grading assignments

Al and collusion detection visualization
« Submissions that are tested for % Al used
« Submissions that are compared for collusion amongst each other
« Visuals to easily display these representations



Tools

COPS (Code Originality and Plagiarism System) for detecting similarity and potential
collusion between student code submissions.

Python for backend analysis, file processing, and detection logic.

Flask for AP| endpoints that connect grading, detection tools, and the web interface.
React for dynamically displaying grades, similarity results, and Al detection data.
Google Cloud Run for scalable deployment and classroom usage.

Firestore and Cloud Storage for managing submission files, grading data, and
metadata.

Git/GitHub for version control and team collaboration.

Python-based feature extraction for source code analysis

Flask APl endpoint for Al probability scoring



Technical Challenges

e Designing plagiarism and Al detection systems that minimize false positives while still
identifying meaningful similarities in student code.

e Integrating multiple features (autograding, rubrics, Al detection, and COPS) into a
single, stable platform.

e Visualizing similarity and detection results in a clear and useful manner for instructors.

e Ensuring the system scales well for large classes while maintaining performance and
data security.



Design

System Architecture

Creates

Grades

Automatic
grader

>

Submits

Al Detector

Grade

Assigns Al
usage
scores

Y

C.OPS.

Assigns
plagiarism
scores



Evaluation

Speed
* Measure how long file uploading is
* Measure how long automated testing/grading is
Accuracy
* Ensure the autograder is grading test cases for submissions correctly
* Ensure all rubric areas are accounting for the grade correctly
Reliability
* Test server capabilities in terms of multiple file submissions or exports at once
* Test security protocols, including the deletion of data, data leaks, and system break-ins
User Demo
* Have professor(s) use the web app to create a course and assignment
* Have students use the web app to make submissions and receive grades/feedback



Progress Summary

Module/feature

Completion %

To do

Roster Importing 50% Force Canvas style spreadsheets for importing

Grade Exporting 0% Create an export button and subsystem to
export a csv in the Canvas gradebook style

Automatic Rubric Based Grading 50% Connect the rubric system to the auto grader

Al Detection 60% Improve accuracy, integrate results into
professor dashboard

COPS 50% Create a matrix and cluster algorithm for the

COPS program to be able to be read and
visualized




Milestone 4

« Complete Automatic Grading Rubric

+ Complete Google Cloud Run Hosting

* Complete Importing Roster

» Integrate Al detection results into the submission workflow

« Evaluate Al detection accuracy using sample student submissions

» Connect Al detection output to the web interface for professor review
* Create a Cluster Algorithm for COPS with visualization



Milestone 5

» Refine Al detection model based on testing results

* Improve interpretability of Al probability scores for instructors

* Release SCORE 2.0 into classrooms

* Collect feedback from users

« Address reliability issues (multiple users at once, large data, security breaches)
« Conduct evaluation and analyze results

» Create poster for Senior Design Showcase

« Complete COPS integration



Milestone 6

« Finalize Al detection integration into the complete system
« Conduct evaluation and analyze results

» Create user manual/developer manual

» Create demo video

« Make any final touches



Task Matrix for Milestone 4

Task Dorothy Patrick Shamik Rak
Rubric Autograder 100% 0% 0% 0%
Completion

Complete Google Cloud | 100% 0% 0% 0%
Run Hosting

Import Roster 0% 0% 100% 0%
Completion

Al Detection Integration | 0% 0% 0% 100%
& Testing

Complete COPS Matrix | 0% 100% 0% 0%







